
NASA-CR-203057

i/_'_ _ _'_ _)

COMPARATIVE PERFORMANCE EVALUATION OF THREE

VOTING SCHEMES*

W. Najjar and J-L. Gaudiot_

Information Sciences Institute

University of Southern California

Marina del Rey, California

_Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, California

Abstract

0, This material is based upon work supported in part by DAP_PA under NASA coop-

erative agreement NCC 2-539

1 Introduction

Fault-tolerant systems aim at providing correct computational results in the

presence of faults as well as system-wide diagnosis. This is achieved through

the use of various redundancy techniques. In general, redundancy techniques

call for the multiple execution of a computation, the majority results is then

taken to be the correct result. Redundancy techniques can be applied either

in time or space. In time redundancy, the same computation is executed

repetitively until a majority result is obtained [PF82]. While this technique

eliminates the effects of intermittent or transient faults, permanent faults

cannot be detected unless different hardware units are used for the different

executions. Space redundancy is commonly known as the NMR scheme,

where N copies of the computation are executed on N hardware elements,

N being an odd number. Variants of the NMR scheme, known as static or

dynamic redundancy, are described in [BF76, SS82].

Multicomputer and multiprocessor systems have an inherent redundancy

that can be exploited to provide fault-tolerant operations. Preparata et al.

[PMC67] proposed a scheme where diagnosis methods are used to :detect

faulty elements that are subsequently isolated from the system. Based on this

scheme, Kuhl and Reddy introduced the notion of distributed fault-tolerance

which is the ability of a system to detect and isolate faulty elements without

relying on any central controller or memory system [KRS0]. For a survey of

fault-tolerance issues in large-scale systems the reader is referred to [KR86].

The hardware redundancy available in multiprocessor and multicomputer

systems can be exploited not only to acheive a faster execution but also a

system reliablity much larger than that of a single element as described in

[vN56]. Assuming that any computation task can always be retried on any

processing element, then redundancy techniques can be applied in both time

and space. Such a scheme to achieve fault-tolerant operations in distributed

systems was proposed by Agrawal in [Agr85] this scheme will be described
in more details in the next section.

Any scheme that exploits redundancy to achieve a more reliable execution

has to rely on some form of voting. The objective of this paper is to compare

and evaluate the performance of three such voting schemes: (1) a variant of

the classical triple-modular redundancy, (2) the recursive scheme rpoposed

by Agrawal [Agr85] and (3) an iterative dual-modular redundancy technique.

The rest of the paper is organized as folows: the three algorithms a

2

re described in details in section 2. Section 3 provides their analysis and
performanceevaluation. The results and their implications are discussedin
section 4. The conclusionsare presentedin section5.

2 Three Voting Schemes

In this section we describe the three voting schemes under consideration.

All three schemes are based on a small set of assumptions about both the

computation and the system models. These assumptions are:

• Task based computation: a computation is modeled as a set of indepen-

dent, and possibly concurrent, tasks.

• Task retriability: all tasks are assumed to be fully retriable.

Failure modes: each processors has a probability p of being not faulty.

There are n possible and equally probable failure modes a processor

can be in. In other words there are n possible wrong results a faulty

processor can produce with a probability of _ each.
n

• Failure-free voter: in the subsequent analysis we will not consider the

effects of voter failures.

2.1 Triple-Modular Redundancy

TMR is without doubts the oldest known voting scheme and the most studied

and utilized in highly reliable systems. In this paper we will be considering

a variant of TMR. Each task is executed on three distinct processors con-

currently. The results are compared. The majority result becomes the final

outcome. If no consensus is reached on a majority, i.e. all three results are

different, then the process is once again repeated on another set of three pro-

cessors, the outcome at every retry is therefore independent of the previous

results. In the TMR method the final outcome is a majority vote of two out

of three.

2.2 A Recursive Algorithm

The recursive algorithm for fault-tolerance (RAFT) was initially described

by Agrawal in [Agr85]. Its implementation and experimental results were

reported in [AA86]. The algorithm consists in initially executing every task

concurrently on two processors. The two results are then compared. In case

of a mismatch the same task is executed again on a third processor and that

result compared to the previous two. The re-execution of a task on a new

processor is repeated until the last result matches any one of the previous

results. Upon a match the final outcome would therefore be a plurality vote

of two out of L where L is the total number of processors employed. This

method requires a result history to be preserved and carried from every task

retry to the next one until a match is achieved.

2.3 An Iterative Algorithm

This scheme can be seen as a hybrid of the previous two. Each task is

executed concurrently on two processors and the two results are compared. In

case of a mismatch the task is retried again on another set of two processors.

At every retry only the last two results are compared. The final outcome

is therefore a unanimity vote of two out of two. In the rest of this paper

this algorithm will be referred to as DMR for dual modular redundancy.

Unlike the recursive algorithm DMR does not require a result history to be

preserved. Like TMR it relies on independent trials.

3 Performance Evaluation

In all three schemes, at each retry of a task there are three possible outcomes

as shown in Figure 1:

• a match, which can be either:

- correct with probability Pc, or

- incorrect with probability Pi.

• no-match.

4

Task Retry

I
I

Mat__) (_No-Match

I Pi

Correc_ _ncorrect

Figure 1: Possible outcomes of a task retry

As stated in the previous section, each processor is assumed to be non-faulty

with a probability p. A faulty processor produces a result that can have

n possible values. One can think of the result as being a k bits word and

therefore there is one correct result and n - 2 k - 1 possible erroneous ones.

3.1 Performance Measures

The following performance measures will be used in comparing the three

schemes. All of these measure will be evaluated as functions of p and n.

• Number of iteration: I(p), is the expected number of times a task will

be retried on one or more processors. It is therefore also a measure of

the time necessary to achieve a match.

• Number of processors used: C(p), is a measure of the amount of re-
sources used.

• Probability of a match: P,_ = Pc + Pi.

• Quality of the decision: QD(p), is the conditional probability of a

match being correct given that a match occurred.

Pc
QD=.-_

5

• Quality of the decision improvement factor: QDIF(p), is a measure of

the improvement a scheme provides over a single processor execution.

QDIF(p) =
1-p

1 - QD(p)

• Relative improvement: measures the improvement on QDIF(p) per

unit of cost overhead. We will consider two types of overhead: time

and resource utilization. The relative improvement per time, Rit, is

measured as the fraction of QDIF per task retry

Rit(p) = QDIF(p)
I(p)

The relative improvement per resources utilized is the fraction of QDIF

per processor used to reach a match.

Rir(p) = QDIF(p)
C(p)

All of the above measures can be derived from the probabilities Pc and

P/. These probabilities are derived analytically in the next section for all

three schemes.

3.2 Analytical Derivations

All three schemes are evaluated using these measures in the rest of this

section. To distinguish them, these measures will be superscripted by M, P

and U for Majority, Plurality and Unanimity respectively.

The Majority Vote Scheme A correct match is obtained when either all

three or two of the processors agree, therefore

pc = pa + 3p2(1 _ p)

An incorrect match can occur when either two processors agree on an in-

correct value with a probability of 1/n or all three of them with probability

1In 2. Therefore
"!

P, = 3p0 - p)2±+ (1- p)3
n n-

The expected number of iterations is

i----1 Pm

Three processors are employed at every iteration, therefore the number of

processors used is C -- 3I.

The Plurality Vote Scheme 1

In this scheme a match is obtained at the i _h iteration (which produces

the (i + 1) result) if the last result matches any of the preceding ones. Unlike

the other two schemes, the probability measures here are function of the

number of results already obtained (denoted by l).

Let Ql(l) be the probability of having all l results incorrect and distinct

(i.e. no match) and Q2(/) that of having only one correct result and (l- 1)

incorrect ones.
n! (1 - p)Z

QI(O = (n- O! n'

Q2(l) can be derived from Q1 as

Q2(1) = lpQl(l- 1)

From these two measures we can derive Pc and P/as

Pc(1) = vQ2(1- 1)

Pi(l) = (1 - p)(I- 1) Qa(l- 1) + (1 - p)(l- 2) Q2(l- 1)
n n

The expected number of processors used is equal to the expected number

of results

c = E t(P,(O+ Po(O)
1=2

Every iteration subsequent to the first one employs only one additional pro-

cessor, therefore the expected number of iterations is I = C - 1.

IThe analysis of this scheme is reproduced and summarized from Agrawal in [Agr85]

7

Since both Pc and Pi and therefore P,_ are functions of the number of

processors I then so is QD. We can express the quality of the decision at or

before the L *h result as

EL=2p_(I,P)
QD(L,p) = X:L=2p (l,p)

In evaluating QD we will use the expected value of L which is C.

The Unanimity Vote Scheme The evaluation of the probabilities for

this scheme is very similar to that of the TMR.

Pc "-i02

P, = (1 - p)2!
n

As in the TMR case I = _ and C = 2I. Each iteration employs two
Pm

processors, therefore C = 2I.

3.3 Comparisons of the Schemes

The comparison is based on the measure of the expected number of iterations

I(p), the quality of the decision improvement factor QDIF(p) and the rela-

tive improvements Rit(p) and Rir(p). For the sake of realism, in. comparing

the three schemes we will consider only values of p in the range [0.45,1.0[.

The plots of I(p) are shown in Figure 2. These plots show that the TMR

scheme requires much less reties than the other two schemes. For lower values

of p (p < 0.85) the recursive algorithm has a better performance than the

iterative one. However, as p increases the values of I P and I v converge. As

expected, all three values converge to I = 1 as p ==* 1.0.

Figure 3 shows the plots for QDIF(p). For both the RAFT and DMR

algorithms, the QDIF(p) is substantially larger than that of the TMR. It is

interesting to note the inflection point' on the QDIF P between the values of

p = 0.65 and 0.7. For p > 0.7 the recursive and the iterative algorithms have

the same values of QDIF.

The plots for the relative improvements in per time and resource over-

head are shown in Figures 4 and 5 respectively. Although the TMR scheme

was shown to require substantially smaller number of iterations to reach an

,o o. oo

0 •

.@-"

,..@'"

,.Q' ,

.

.e

;: i

..- .0

• .

. ."

.e : o

P

I I l I

o
lo

o

o

Lo
.oo

o
.oo

Lo
. L"-,-

C_

C_
. L".--

LO

C_

C_

C_

b.O
._0

C_

0

c_

.o

0

I-i

of..g

QDIF(p)

3200

3000

2800

2600

2400

2200

2000

1800

1600

1400

1200

1000

800

60O

4O0

2OO

o : Majority

. : Plurality

• : Unanimity

O

..'"•

.O"" .••'

• .'*'" . ..O""

0...-"" ..*O'"'

•....,°°

:.::::.*::;::::; g ;,o.... z :: : :_: _" ":_""..." ...

, 1......... I l 1 I I I I , I t l
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.97

, P

Figure 3: Quality of the d_ision improvement factor

TE(p)

3000

2800

2600

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200"

o : Majority I

• : Plurality I

. : Unanimltyl
\

/
i

, ID

,'

: II

i

.::,w ..'"

• •t@'::"O'"

..:::.'.:-O""

:::;:::_::;;;;;;;_I;:::::::T::..:::::,::::"'_'"""_:::: , , , I I

$

.

" o

I I

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.97
P

Figure 4: Time Efficiency
11

Ef f(p)

1400

1200

1000

800

600

400

200

* : Majority I

• : Plurality

• : Unanimity

::

::
::

::

::
::

2:

.." ..

...".3"

. ,'.,"

. ." .•'.

.0

• _ _
.... ..

:::...o o.'
• _.:','/':8: ::

: :: :_: z_; ; ___;! _;9!! _"_!__._.t_'.! :: : ::::I "'' I I n n t n n
u u i n u i u u i i ,

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.97
.- p

Figure 5: Resource Efficiency
12

agreement, the plots in Figure 4 show that the improvement achieved per

time to execute a task is still lower than the other two schemes. As in the

plots for QDIF(p), both RAFT and DMR have the same values of Rit(p) for

larg values of p. In Figure 5, for lower values of p (p < 0.65) the TMR and

DMR have very close values of Rir(p) and are both larger than that of the

recursive algorithm. For larger values of p RAFT and DMR have increasingly

better efficiencies than the TMR and their respective values are very close

differing by a small and constant amount.

4 Discussion of Results

The results of the preceding section show that for larger values ofp (p > 0.85)

the probability of getting a correct match using the either the recursive or the

iterative algorithms is substantially higher than with the TMR. The TMR,

however, requires a smaller number of iterations to reach an agreement.

Intuitively this phenomenon can be explained as follows: at the first

iteration, for both RAFT and DMR the choice for a match are two out of

two while for TMR it is two out of three. Therefore the TMR offers _more

possibilities for an incorrect match. After the second retry in RAFT (i.e.

when there are three results) the situation is identical to that of TMR with

only one iteration. They have therefore the same probabilities of a correct

or incorrect match. When the three results are mismatched the next retry

would provide RAFT with a choice of two out of four while the TMR will

once again be a choice of two out of three. If we assume reasonable values of

p (i.e. p > 0.5) and a large value for n its is more probable to get a correct

match of two out of four than of two out of three.

The DMR algorithm is identical to the TMR except that it uses two pro-

cessors instead of three at every task retry. This limitation on the number

of processors increases the expected number of iterations to reach an agree-

ment. However its vote is a two out of two choice. Given the assumptions on

p and n, the likelihood of an incorrect match is therefore much lower than

that of the TMR.

The RAFT and DMR algorithms were shown to provide, for all practical

purposes, the same performance levels. RAFT, on the other hand is the least

wasteful of system resources of all three schemes. It requires a smaller number

of retries than DMR and each retry would use only on e additional processors.

13

The RAFT algorithm, however,requiresthat a history of the task execution

be maintained and communicated to every processor performing a retry on

that task. The DMR algorithm, like the TMR, is based on independent

retries and would not require such an overhead.

In the preceding section the performance of the three algorithm was eval-

uated for values of p up to 0.97. These plots are useful to show the overall

trend in performance over a wide range of values for p. In most cases how-

ever, the actual or expected reliability of a single processor is much larger

than 0.97. For illustration purposes, Table 1 shows the same performance

measures for higher processor reliability (p = 0.999). The values show the

RAFT and DMR algorithms to have the same performance levels. A retry

in the TMR scheme appears to be much less likely than with the other two

with, however, a lower value of QDIF.

5 Conclusion

In this paper, three algorithms for fault-tolerance in mutiprocessor and mul-

ticomputer systems have been evaluated and compared. All three algorithms

rely on the retriability of a computation task. Two of these algorithms (TMR

and DMR) are iterative in nature and the outcome at each retry is indepen-

dent of the previous trials. The third one (RAFT) is a recursive algorithm,

at every retry the result is compared to all the previous ones for that task.

The schemes were evaluated according to three types of measures: (1)the

system reliability as expressed by the quality of the decision and the quality of

the decision improvement factor, (2) the overhead incurred in both number of

retries and total number of processors used and (3) the relative improvement

per unit of overhead.

From the performance evaluation of these three schemes we can conclude

that, in the general case, TMR provides a good relability. In particular when

the reliability of the single processor (p) can be arbitraiily low, the TMR

algorithm provides a better performance than the other two schemes. When

the reliability of a single processor can be expected to be larger than 0.7 then

the RAFT and DMR algorithms provide a better reliability than TMR with

a lower cost in overhead. Furthermore, it was observed that for these values

of p the RAFT and DMR algorithms have the exact same performance levels.

14

References

[AA86]

[Agr85]

[BF761

[KR80]

[KR86]

P. Agrawal and R. Agrawal. Software implementation of a recur-

sive fanlt-tolerance algorithm on a network of computers. In Pro-

ceedings of the 13 th Annual Symposium on Computer Architecture,

pages 65-72, 1986.

P. Agrawal. RAFT: A recursive algorithm for fault-tolerance. In

Proceedings of the 1985 International Conference on Parallel Pro-

cessing, pages 814-821, 1985.

M.A. Breuer and A.D. Friedman. Diagnosis and Reliable Design

of Digital Systems. Computer Science Press, Rockville MD., 1976.

J.G. Kuhl and S.M. Reddy. Distributed fanlt-tolerance for large

multiprocessor systems. In Proceedings of the 7 th Annual Sympo-

sium on Computer Architecture, pages 23-30, July 1980.

J.G. Kuhl and S.M. Reddy. Fault-tolerance considerations in large

multiple-processor systems. IEEE Computer, 19(3):56-67, March
1986.

[PF82]

[PMC67]

[ss82]

[vN5@

J.H. Patel and L.Y. Fung. Concurrent error detection in ALU's by

recomputing with shifted operands. IEEE Transactions on Com-

puters, C-31(7):589-595, July 1982.

F.P. Preparata, G. Metze, and R.T. Chien. On the connection

assignement problem of diagnosable systems. IEEE Transactions

on Electronic Computers, EC-16:848-854, December 1967.

D.P. Sieworek and R.S. Swartz. The Theory and Practice of Reli-

able System Design. Digital Press, Bedford, Mass., 1982.

J. von Neuman. Probabilistic logics and the synthesis of reliable or-

ganisms from unreliable components. In C.E. Shannon and J. Mc-

Carthy, editors, Automata Studies, pages 43-98. Princeton Univer-

sity Press, Princeton, N J, 1956.

15

[[[I(p) QDIF(p) Rit(p) Rir(p)

TMR 1.00001 33366 ii122 33366

RAFT 1.002

DMR 1.002

996O099800 49850

99800 49800 99600

Table 1: Comparative performance for p = 0.999

16

